Omega-3 Fatty Acids

Omega-3 fatty acids are beneficial for the improvement of heart parameters during exercise, help promote muscle recovery by reducing inflammation and reduce the incidence of exercise induced bronchoconstriction. Walser et al., (2008)24 tested the hypothesis that dietary supplementation with EPA (3 g/day) + DHA (2 g/day) would be beneficial in the change in heart parameters during exercise. Twelve healthy subjects received EPA/DHA and nine subjects received safflower oil as a control. Both groups performed 20 minutes of bicycle exercise (ten minutes each at low and moderate work intensity) before and after EPA/DHA or safflower oil treatment. Mean arterial pressure, heart rate, stroke volume, cardiac output and systemic vascular resistance were assessed before exercise and during both workloads. EPA/DHA augmented increases in stroke volume and cardiac output and tended to attenuate decreases in systemic vascular resistance during the moderate workload whereas safflower oil treatment had no effects. The observed increases in stroke volume and cardiac output with EPA/DHA supplementation imply that these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance. In another study, the effects of fish oil supplementation and exercise were investigated in healthy, previously sedentary males, ages 19-34. Thirty-two subjects were assigned to four groups: control, fish oil, exercise, fish oil and exercise. The fish groups consumed 4000 mg/day of omega-3 fatty acids. The exercise groups performed aerobic exercise for one hour three times per week for ten weeks with pre- and post- values obtained for cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, maximal oxygen consumption, ventilatory anaerobic threshold, percent body fat, and dietary composition of macronutrients and polyunsaturated to saturated fat (P:S) ratio. Maximum oxygen consumption was greater for the exercise groups (exercise and fish oil exercise) as compared to the control group. Ventilatory anaerobic threshold was significantly greater with fish oil, exercise, and their combination compared to control. This data indicates an improvement in aerobic metabolism from aerobic exercise, alone or in combination with fish oil, compared to controls25.
Omega-3 fatty acids enhance exercise-induced increases in brachial artery diameter and blood flow during rhythmic exercise, whereas safflower oil rich in omega-6 fatty acids have no effect. Treatment with 5000 mg (2 g/d DHA and 3 g/d EPA) of omega-3 fatty acids enhanced brachial artery blood flow and conductance during exercise26. In another study 18 white men with a history of myocardial infarction and ejection fractions were randomized to placebo or omega-3 fatty acids (585 mg DHA and 225 mg EPA) for two, four-month periods in a crossover design. At the end of each period, heart rate, heart rate variability, and rate of heart rate recovery after exercise were determined, as were effects on arterial compliance, blood pressure, cardiac function, and fasting serum levels of lipids and inflammatory markers. Omega-3 fatty acids decreased heart rate at rest from 73+/-13 to 68+/-13 beats/minute and improved 1-minute heart rate recovery after exercise. Heart rate variability in the high-frequency band increased, but no change was noted in overall heart rate variability27.

The immune system of athletes is affected by intensity and duration of exercise. Exhausting activities tend to produce adverse changes in immune parameters such as total leukocytes, number of natural killer cells, lymphocyte count, helper-to-suppressor cell ratio, proliferative response to a mitogen, and others35. Furthermore, during exercise, there is an increase in the generation of superoxide radicals in the lipid bilayers of muscle mitochondria, and trauma to the muscles16. Unaccustomed eccentric exercise causes muscle damage that presents as delayed soreness, strength and range of motion loss, swelling, and increased passive stiffness. These symptoms reduce the ability to exercise and might be harmful if further exercise is continued36. Excessive radical formation and trauma during high-intensity exercise leads to a state of inflammation that is made worse by the increased amounts of omega-6 found in the Western diet.

The effects of placebo or a dietary supplement containing mixed tocopherols, flavonoids, and the omega-3 fatty acid DHA on exercise-induced markers of cell damage and the inflammatory mediators C-reactive protein (CRP) and interleukin-6 (IL-6) in 40 healthy, nonsmoking, untrained males for 14 days was investigated37. Blood samples were collected on day 0 (baseline), day 7 (eccentric exercise-induced injury), day 10, and day 14. Eccentric arm curl exercise was used to induce an acute phase injury response as evidenced by significant increases in creatine kinase, lactate dehydrogenase, and pain, as well as a decreased range of motion three days after the exercise. There were significant group differences for IL-6 and C-reactive protein and the authors concluded that exercise-induced inflammation, evaluated by changes in IL-6 and C-reactive protein, were significantly reduced by the omega-3 fatty acid containing dietary supplement.
We confirm that FREZZOR is a PROPRIETARY BLEND 150mg soft-gel cap that contains pure greenlip mussel oil. The exact amount is proprietary information that we cannot disclose. We use NO fillers, NO preservatives, and NO carriers.
Firstly, greenlip mussel oil contains over 33 different fatty acid groups (lipid groups). Within the greenlip mussel fatty acid family there are approximately 18 well represented omega-3 structures in both the triglyceride and phospholipids’ forms. Two of these structures are better known than others, namely EPA and DHA.
EPA and DHA are not a measure of how effective a product is. These are just two common figures given by unethical companies in order to convince consumers that their product is the one to buy and use. This is a very simplistic approach that has no scientific merit or basis.
Effectiveness of a product has nothing to do with the very simplistic approach of how much EPA and DHA is actually in a product, but rather the synergistic results that both these compounds (EPA and DHA) help to provide combined with a large number of other forms of omega-3s found in the greenlip mussel in the correct ratios and structures. What this means in very specific terms is the wellness benefit experienced and the superior effectiveness is due to the unique combination and structure of the omega-3s found in the greenlip mussel. This unique ratio and collection of omega-3, 6’s, 7’s and 9’s structures are not found in salmon, krill, cod, or anywhere else in nature and due to the FREZZOR proprietary extraction process are fully bio available in exactly the same ratios as nature designed greenlip mussels making them a complete , balanced complex of lipids. Greenlip mussel oil is significantly more effective than any other natural form of omega-3s on the planet in reducing inflammation.
Results always speak louder than words or figures and if anyone takes the time to research the benefits of using greenlip mussel extract as a source of omega-3s they will be quickly convinced that this is the right approach in comparison to other natural sources of omega-3s.
The reason that FREZZOR provides a superior wellness experience to other products containing greenlip mussel extract is due to a number of steps in the treatment of the raw material and the unique proprietary processes used in FREZZOR’s production. The result of these combined proprietary processes is an extract that contains a lot more “polar” omega-3s, in particular in the phospholipids’ form than any other greenlip mussel extract. These “polar” forms of omega-3s which include the well-known DHA and EPA (which can be either “polar” and “non-polar”) have been shown to be more readily available (bio-available) to form the necessary bonds with cells within the human body to provide therapeutic efficacy.
This can be seen to be the case in a very simplistic manner with sources of fish oil such as cod and salmon that have undergone a refining process called esterification that increases the amount of EPA and DHA -synthetically in order to advertise a higher than natural EPA and DHA figure in order to convince the ill-informed consumer that a particular product is superior. There is less benefit from these esterified fish oils than from fish oils in their natural state, in fact some countries have banned this process for human consumption on the basis of the poor uptake into the body and the confusion it creates in the market-place.
Jeremy Harris
Director General
FREZZOR Science Advisory Board

1. Eaton SB, Konner M: Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985; 312:283-289.

2. Simopoulos AP: Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991; 54:438-463.

3. Li JJ, Huang CJ, Xie D. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res. 2008;52:631-45.

4. Kunesová M, Braunerová R, Hlavatý P, Tvrzická E, Stanková B, Skrha J, Hilgertová J, Hill M, Kopecký J, Wagenknecht M, Hainer V, Matoulek M, Parízková J, Zák A, Svacina S. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res. 2006;55:63-72.

5. Parra D, Ramel A, Bandarra N, Kiely M, Martínez JA, Thorsdottir I. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51:676-80.

6. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, Bandarra NM, Schaafsma G, Martinéz JA. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond). 2007;31:1560-6.

7. Mori T, Kondo H, Hase T, Tokimitsu I, Murase T Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. J Nutr. 2007;137:2629-34.

8. Shirouchi B, Nagao K, Inoue N, Ohkubo T, Hibino H, Yanagita T. Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats. J Agric Food Chem. 2007;55:7170-6.

9. Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177-85.

10. Hainault I, Carolotti M, Hajduch E, Guichard C, Lavau M. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann N Y Acad Sci. 1993;683:98-101.

11. Markovic O, O’reilly G, Fussell H M, Turner SJ ; Calder P, Howell WM, Grimble RF, Role of single nucleotide polymorphisms of proinflammatory cytokine genes in the relationship between serum lipids and inflammatory parameters, and the lipid-lowering effect of fish oil in healthy males. Clinical Nutrition.2004; 23: 1084-1095.

12. Gunnarsdottir I, Tomasson H, Kiely M, Martinéz JA, Bandarra NM, Morais MG, Thorsdottir I. Inclusion of fish or fish oil in weight-loss diets for young adults: effects on blood lipids. Int J Obes (Lond). 2008; 32:1105-12.

13. Scaglioni S, Verduci E, Salvioni M, Bruzzese MG, Radaelli G, Zetterström R, Riva E, Agostoni C. Plasma long-chain fatty acids and the degree of obesity in Italian children. Acta Paediatr. 2006;95:964-9.

14. Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85:1267-74.

15. Pellizzon M, Buison A, Ordiz F Jr, Santa Ana L, Jen KL. Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obes Res. 2002;10:947-55.

16. Simopoulos AP: Proceedings of the First International Conference on Nutrition and Fitness. Am J Clin Nutr 1989; 49(Suppl):909-1124.

17. Simopoulos AP, Pavlou KN: Volume I. Nutrition and fitness for athletes. Proceedings of the Second International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 71. Basel: Karger; 1993.

18. Simopoulos AP: Volume II. Nutrition and fitness in health and disease. Proceedings of the Second International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 72. Basel: Karger; 1993.

19. Simopoulos AP: Volume I. Nutrition and fitness: evolutionary aspects, children’s health, policies and programs. Proceedings of the Third International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 81. Basel: Karger; 1997.

20. Simopoulos AP, Pavlou KN: Volume II. Nutrition and fitness: metabolic and behavioral aspects in health and disease. Proceedings of the Third International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 82. Basel: Karger; 1997.

21. Simopoulos AP, Pavlou KN: Volume 1. Nutrition and fitness: diet, genes, physical activity and health. Proceedings of the Fourth International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 89. Basel: Karger; 2001.

22. Simopoulos AP, Pavlou KN: Volume 2. Nutrition and fitness: metabolic studies in health and disease. Proceedings of the Fourth International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 89. Basel:, Karger; 2001.

23. Simopoulos AP: Volume I. Nutrition and fitness: obesity, the metabolic syndrome, cardiovascular disease, and cancer. Proceedings of the Fifth International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 94. Basel: Karger; 2005.

24. Walser B, Stebbins CL. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise. Eur J Appl Physiol. 2008;104:455-6.

25. Brilla LR, Landerholm TE. Effect of fish oil supplementation and exercise on serum lipids and aerobic fitness. J Sports Med Phys Fitness. 1990;30:173-80.

26. Walser B, Giordano RM, Stebbins GL: Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur J Appl Physiol. 2006, 97:347-354.

27. O’Keefe JH Jr, Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006;97:1127-30.

28. McFadden ER, Lenner KAM, Strohl KP: Postexertional airway rewarming and thermally induced asthma. Clin Invest. 1986, 78:18-25.

29. Anderson SD, Schoeffel RE, Black JL, Daviskas E: Airway cooling in the stimulus to exercise-induced asthma: a reevaluation. Eur J Respir Dis 1985, 67:20-30.

30. Mickleborough T.D. and Gotshall R.W. Dietary components with demonstrated effectiveness in decreasing the severity of exercise-induced asthma. Sports Medicine 2003 33:9 (671-681).

31. Davis MS, Freed AN: Repetitive hyperpnoea causes peripheral airway obstruction and eosinophilia. Eur Respir J 1999;14:57-62.

32. Sue-Chu M, Karjalainen EM, Laitinen A, et al.: Placebo controlled study of inhaled budesonide on indices of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsies in cross-country skiers. Respiration (Herrlisheim). 2000; 67:417-425.

33. Mickleborough TD, Lindley MR, Ionescu AA, Fly AD. Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma. Chest. 2006;129:39-49.

34. Mickleborough T.D., R.L. Murray, A.A. Ionescu, and M.R. Lindley. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 2003; 168:1181-1189.

35. Venkatraman JT, Pendergast D. Effect of dietary intake on immune function in athletes. Med Sci Sports Exerc 2002;32:323.

36. Weerapong P., Hume P.A. and Kolt G.S. Preventative strategies for exercise-induced muscle damage. Critical Reviews in Physical and Rehabilitation Medicine 2004; 16:133-149.

37. Phillips T, Childs AC, Dreon DM, Phinney S, Leeuwenburgh C. A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc. 2003;35:2032-7.

38. Simopoulos AP: Volume II. Nutrition and fitness: mental health, aging, and the implementation of a health diet and physical activity lifestyle. Proceedings of the Fifth International Conference on Nutrition and Fitness. In World Review of Nutrition and Dietetics, vol 95. Basel: Karger; 2005.

39. Karlsson J: Exercise, muscle metabolism and the antioxidant defense. World Rev Nutr Diet 1997; 82:81-100.